最終更新日: 2021年1月31日

「基礎からスッキリわかる微分積分」(第2刷)正誤表

	誤	正
p.viii		
	左半開区間 $\{x \mid a < x \leq b\}$ $[a,b)$	左半開区間 $\{x \mid a < x \leq b\}$ $(a, b]$
p.4, 定理 1.4	$a_n \leq c_n \leq b_n$ かつ $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$ ならば	$a_n \leq c_n \leq b_n$ かつ $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$ ならば
p.15, 例題 1.5(6)	$\lim_{x \to \infty} (\sqrt{x^2 + 4x} + \sqrt{x^2 + x})$	$a_n \leq c_n \leq b_n \text{ かつ} \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a \text{ ならば}$ $\lim_{x \to \infty} (\sqrt{x^2 + 4x} - \sqrt{x^2 + x})$
p.16, 例題	分母と分子に, $\sqrt{x^2+4x}-\sqrt{x^2+x}$ をかけると,	分母と分子に, $\sqrt{x^2+4x}$ + $\sqrt{x^2+x}$ をかけると,
1.5(6) の解答	$\lim_{x \to \infty} (\sqrt{x^2 + 4x} + \sqrt{x^2 + x}) = \lim_{x \to \infty} \frac{(x^2 + 4x) - (x^2 + x)}{\sqrt{x^2 + 4x} - \sqrt{x^2 + x}}$ $= \lim_{x \to \infty} \frac{3}{\sqrt{1 + \frac{4}{x}} + \sqrt{1 + \frac{1}{x}}} = \frac{3}{2}.$	$\lim_{x \to \infty} (\sqrt{x^2 + 4x} - \sqrt{x^2 + x}) = \lim_{x \to \infty} \frac{(x^2 + 4x) - (x^2 + x)}{\sqrt{x^2 + 4x} + \sqrt{x^2 + x}}$ $= \lim_{x \to \infty} \frac{3}{\sqrt{1 + \frac{4}{x}} + \sqrt{1 + \frac{1}{x}}} = \frac{3}{2}.$
p.17, 問 1.4(3)	$(3)\lim_{x\to\frac{\pi}{2}}\left(x-\frac{\pi}{2}\right)^{\cos x}$	$(3) \lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} + 1 \right)^{\frac{\cos x}{x - \frac{\pi}{2}}}$
p.26, 例題 1.13(4)	極限値 $\lim_{x o 0} rac{\sin^{-1} x}{x}$ のを求めよ.	極限値 $\lim_{x \to 0} \frac{\sin^{-1} x}{x}$ ⇔を求めよ.
p.29, 問 1.4(3) の解答	$(3) 1 (ヒント) y = \left(x - \frac{\pi}{2}\right)^{\cos x} とおくと , \log y = \cos x \cdot \left(x - \frac{\pi}{2}\right).$	(3) 1 (ヒント) $y = \left(x - \frac{\pi}{2} + 1\right)^{\frac{\cos x}{x - \frac{\pi}{2}}}$ とおくと , $\log y = \cos x \cdot \frac{\log\left(x - \frac{\pi}{2} + 1\right)}{x - \frac{\pi}{2}}$.
p.30, 演習	(8) 1 (ヒント) $y = \log(1+x+x^2)^{\frac{1}{x}}$ とすれば , $\log y = \frac{x+x^2}{x} \cdot \frac{\log(1+x+x^2)}{x+x^2}$	(8) e (ヒント) $y = (1+x+x^2)^{\frac{1}{x}}$ とすれば , $\log y = \frac{x+x^2}{x} \cdot \frac{\log(1+x+x^2)}{x+x^2}$
1.2(8) の解答	で, $\lim_{x \to 0} \log y = 1$	で, $\lim_{x \to 0} \log y = 1$

	誤	正
p.38, 問	$(4) \cos \lambda x$	$(4) \cosh \lambda x$
2.4(4)		
p.48, 問 2.4	(3) $\lambda \cos \lambda x$ (4) $-\lambda \sin \lambda x$	(3) $\lambda \cosh \lambda x$ (4) $\lambda \sinh \lambda x$
の解答,		
p.59, 例題 3.5		
の解答	$\sin x = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \dots + \frac{(-1)^{m+1}}{(2m-1)!}x^{2m-1} + \frac{0}{(2m)!}x^{2m}$	$\sin x = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \dots + \frac{(-1)^{m-1}}{(2m-1)!}x^{2m-1} + \frac{0}{(2m)!}x^{2m}$
p.60, sin x の 近似式	$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + \frac{(-1)^{m+1}}{(2m-1)!}x^{2m-1} + \frac{(-1)^m \cos \theta x}{(2m+1)!}x^{2m+1}$	$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + \frac{(-1)^{m-1}}{(2m-1)!}x^{2m-1} + \frac{(-1)^m \cos \theta x}{(2m+1)!}x^{2m+1}$
p.69, 問 3.8	$f(x) = (\sin x)^{\frac{2}{3}}$	$f(x) = \sqrt[3]{\sin^2 x}$
p.79, 演習 3.6(2)の解答	$\log 3 + \frac{3}{2}(x-1) - \frac{2}{9}(x-1)^2 + \frac{8}{81}(x-1)^3 + \cdots$	$\log 3 + \frac{2}{3}(x-1) - \frac{2}{9}(x-1)^2 + \frac{8}{81}(x-1)^3 + \cdots$
	$f(x) = \sin x - \left(x - rac{x^2}{2} ight)$ とおき, $f''(x) > 0$ を示す.次にこの結果を使って,	$f(x) = \sin x - \left(x - rac{x^2}{2} ight)$ とおき, $f''(x) \geqq 0$ を示す.次にこの結果を使って,
3.7(2) の解答	f'(x)>0 を示す.	f'(x) > 0 を示す.
p.96, 例題 4.9		【注意】例題 4.9(4) の公式は,覚えにくいかもしれない.その場合は,解答に
の解答に側注		示した (4) は $t=a\sin x$ という置換法を覚えた方がよいだろう.計算する手間
を追加		はかかってしまうが,公式よりは置換法の方が覚えやすいと思われる.
p.120, 問 4.9(3) の解答	与式 = $\int \frac{1}{\sqrt{(x+2)^2+5}} dx = \log \left x+2+\sqrt{x^2+4x+5} \right + C$	与式 = $\int \frac{1}{\sqrt{(x+2)^2+1}} dx = \log \left x+2+\sqrt{x^2+4x+5} \right + C$

	誤	正
p.130, 例題 5.3 の解答に 側注を追加		【注意】極方程式 $r=a(1+\cos\theta)$ を $y=a(1+\cos x)$ と考えないこと.考えている座標系が違うことに注意しよう.ちなみに $y=2(1+\cos x)$ のグラフは次のようになる.前ページのカージオイドの概形と明らかに違う.
p.134, 側注 [側面積と表 面積] の語調 を揃える	上面や下面などの底面を除いた面積です.	上面や下面などの底面を除いた面積である.
p.136, 問 5.6	次の体積もしくは表面積を求めよ.	次の体積もしくは <mark>側</mark> 面積を求めよ.
	$1.$ 曲線 $y=e^x$ と 2 直線 $x=1,x=2$ および x 軸に囲まれた部分を x 軸まわりに 1 回転してできる回転体の体積.	$1.$ 曲線 $y=e^x$ と 2 直線 $x=1,x=2$ および x 軸に囲まれた部分を x 軸まわりに 1 回転してできる回転体の体積.
	$2.$ 曲線 $x= an heta,y=\cos2 heta\left(-rac{\pi}{4}\leqq heta\leqqrac{\pi}{4} ight)$ を x 軸のまわりに 1 回転させてできる立体の体積.	$2.$ 曲線 $x= an heta,\ y=\cos 2 heta\left(-rac{\pi}{4}\leqq heta\leqqrac{\pi}{4} ight)$ を x 軸のまわりに 1 回転させてできる立体の体積.
	$3. \ y = \sin x \ (0 \leqq x \leqq \pi)$ を x 軸のまわりに回転してできる回転体の表面積.	$3. \ y = \sin x \ (0 \le x \le \pi)$ を x 軸のまわりに回転してできる回転体の側面積.

	誤	正
p.137, 「発	以下,右辺の極限値が存在するとき,左辺の広義積分を右辺の極限値で定義す	以下,右辺の極限値が存在するとき,左辺の広義積分を右辺の極限値で定義す
散」の説明を	- スト,石辺の極限値が存在すること,左辺の広義積分を石辺の極限値と定義する.また,右辺の極限値が存在しなければ,広義積分は存在しないことになる.	る.また,右辺の極限値が存在しなければ,広義積分は存在しないことになり,
追加.	なお, $(ext{iii})$ と $(ext{iv})$ において, $arepsilon$ と $arepsilon'$ は独立であることに注意されたい.	このとき広義積分は発散するという. なお, (iii) と (iv) において, ε と ε' は独
		立であることに注意されたい。
p.144	次の級数の収束・発散を調べよ.ただし, p は $p \leq 1$ を満たす定数である.	次の級数の収束・発散を調べよ.ただし, p は $p \ge 1$ を満たす定数である.
p.161, 162,		
例題 6.10 の 解答	$f_x(x,y) = \frac{1}{1 + \left(\frac{x}{3y}\right)^2} \frac{\partial}{\partial x} \left(\frac{x}{3y}\right) = \frac{1}{\frac{9x^2 + x^2}{y^2}} \cdot \frac{x}{3y} = \frac{9y^2}{x^2 + 9y^2} \cdot \frac{x}{3y} = \frac{3y}{x^2 + 9y^2}$	$f_x(x,y) = \frac{1}{1 + \left(\frac{x}{3y}\right)^2} \frac{\partial}{\partial x} \left(\frac{x}{3y}\right) = \frac{1}{\frac{9y^2 + x^2}{9y^2}} \cdot \frac{1}{3y} = \frac{9y^2}{x^2 + 9y^2} \cdot \frac{1}{3y} = \frac{3y}{x^2 + 9y^2}$
	$f_y(x,y) = \frac{1}{1 + \left(\frac{x}{3y}\right)^2} \frac{\partial}{\partial y} \left(\frac{x}{3y}\right) = \frac{1}{\frac{9x^2 + x^2}{y^2}} \cdot \left(-\frac{x}{3y^2}\right) = \frac{-3x}{x^2 + 9y^2}$	$f_y(x,y) = \frac{1}{1 + \left(\frac{x}{3y}\right)^2} \frac{\partial}{\partial y} \left(\frac{x}{3y}\right) = \frac{1}{\frac{9y^2 + x^2}{9y^2}} \cdot \left(-\frac{x}{3y^2}\right) = \frac{-3x}{x^2 + 9y^2}$
p.169, 問 6.6 の解答	$h^{3} \frac{\partial^{3}}{\partial x^{3}} f(x,y) + 3h^{2} k \frac{\partial^{3}}{\partial^{2} x \partial y} f(x,y) + 3hk^{2} \frac{\partial^{3}}{\partial x \partial y^{2}} f(x,y) + k^{3} \frac{\partial^{3}}{\partial y^{3}} f(x,y)$	$h^{3} \frac{\partial^{3}}{\partial x^{3}} f(x,y) + 3h^{2} k \frac{\partial^{3}}{\partial x^{2} \partial y} f(x,y) + 3hk^{2} \frac{\partial^{3}}{\partial x \partial y^{2}} f(x,y) + k^{3} \frac{\partial^{3}}{\partial y^{3}} f(x,y)$
p.169, 演習 6.3(3)の解答	$z_y = xe^{xy} \left(\cos^{-1} \left(\frac{x}{y} \right) + \frac{x}{ y \sqrt{y^2 - x^2}} \right)$	$z_y = xe^{xy} \left(\cos^{-1} \left(\frac{x}{y} \right) + \frac{1}{ y \sqrt{y^2 - x^2}} \right)$
p.183, 問	$(\sqrt{3},0)$ で極大値 $\sqrt{3}$. $(-\sqrt{3},0)$ で極値なし .	$(\sqrt{3},0)$ で極大値 $6\sqrt{3}$. $(-\sqrt{3},0)$ で極値なし .
7.2(1) の解答		
p.207, 演習	回転体の表面積 S は	回転体の <mark>側</mark> 面積 S は
8.6(2)		
p.208, 問 8.5(1) の解答	$D = \{(x, y) \mid x^2 + y^2 \le a^2\}$	$D = \{(x,y) \mid x^2 + y^2 \le a^2, \mathbf{x} \ge 0\}$